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Abstract

In this paper, we review recent results on the role of entropy in the numerical integration of conservation laws.
It is well known that weak solutions of systems of conservation laws may not be unique. Physically relevant weak
solutions possess a viscous profile and satisfy entropy inequalities. In the discrete case entropy inequalities are used
as a tool to prove convergence to entropy dissipating weak solutions. We start with classical results, in which entropy
stability is used to prove the convergence of numerical solutions. We continue with entropy stable schemes, which are
designed in order to produce entropy dissipation and can be proven to be convergent. Next we consider entropy as an
error/regularity indicator permitting a local control on the behavior of the scheme, and thus driving grid and scheme
adaptivity.
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1. Introduction

We consider systems of m conservation laws in d dimensions:

ut +

d∑
j=1

∇x j · f j(u) = 0, A j(u) = ( f j)u(u). (1)

We suppose that the system is hyperbolic, i.e. each Jacobian matrix A j(u) has m real eigenvalues and a complete
set of eigenvectors ∀u. Many mathematical models describing physical phenomena characterized by signals travel-
ling with finite speed of propagation can be written in this form. Applications include gas dynamics, traffic flow,
magnetohydrodynamics, astrophysics, to name just a few.

It is well known that solutions of (1) may exhibit a very rich structure, with discontinuities (shocks) arising in
a finite time even from smooth initial data. This possibility obliges to enrich the set of possible solutions of (1)
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introducing the class of weak solutions. The set of weak solutions contains piecewise C1 functions, with step-like
discontinuities whose speed is imposed by the weak form itself, through the so-called Rankine-Hugoniot conditions.
The problem is that enlarging the class of admissible solutions, uniqueness is lost, and retrieving uniqueness turns out
to be an extremely hard task, which up to now has not been settled in the general case, [1].

In many models of the form (1) coming from physics, the hyperbolic system is obtained disregarding higher order
terms, multiplied by a small parameter. In many cases, the higher order term is parabolic, and the small parameter
is a diffusive parameter, which, in analogy with fluid dynamics, is called viscosity. In these cases, uniqueness can
be retrieved if weak solutions of (1) are required to be limits of viscous solutions as the viscosity tends to zero. On
the other hand, uniqueness in physics is often ensured imposing irreversibility on admissible shocks. This results
in entropy conditions that a weak solution should satisfy. The link between these two criteria is complex. Weak
solutions obtained with the vanishing viscosity method satisfy entropy conditions [1, 2]. The reverse is not true in
general, and is linked to the richness of the family of entropies that a system possesses. The best understood case, is the
multidimensional scalar case, where entropy conditions are enough to ensure uniqueness, see [3], where Kruzkhov’s
uniqueness result is clearly described.

The numerical integration of (1) clearly must deal with the same difficulties encountered in the analysis of systems
of conservation laws. It is easy to design schemes that compute weak solutions propagating with the speed prescribed
by the Rankine Hugoniot conditions. These are the so called conservative schemes, and their introduction has per-
mitted to construct schemes which preserve exactly the correct speeds, with a very easy to implement condition on
the numerical fluxes. The issue of ensuring convergence to the correct unique solution has proven to be much harder.
Usually, one relies on discrete entropy conditions, which however is satisfactory only in the scalar case.

However, the numerical solution of hyperbolic systems, beside the difficulties arising from the analysis of these
equations, introduces new ones, which are linked to the need of dealing with discontinuous solutions. First order
schemes have the most favourable theoretical results. The class of monotone schemes produces solutions which
are perturbed by a viscous-like error term, and thus they converge to solutions possessing a viscous profile, [3, 4].
Moreover, they satisfy discrete entropy inequalities. However, they converge slowly, thus requiring very fine grids, and
they smear discontinuous profiles. Increasing the order is conceptually quite easy, but numerical difficulties increase
tremendously. High order schemes tend to produce spurious oscillations on shocks which may interact non linearly
with the solution, generating unreliable results. To prevent the onset of spurious oscillations, a huge amount of ideas
has been spent, and the literature is very extensive, see [3, 4] for second order schemes and [5] for higher order, and
their references. Higher order schemes do not produce numerical solutions with an error term characterized by a
neat parabolic structure, as is the case for first order schemes. Thus it is hard to prove that their numerical solutions
converge to vanishing viscosity solutions. Initially, the construction of high order schemes has concentrated on the
need to avoid spurious oscillations, introducing the concept of TVD (Total Variation Diminuishing) schemes, which
are prevented from oscillating by brute force. But this concept cannot be applied in 2D, and it cannot be applied even
in 1D for the solution of systems of equations in conservative variables.

For these reasons, exploring the consequences of imposing entropy conditions at the discrete level has been a
fruitful tool. This program of work has started at the beginning of the ’80s, with a series of works [6], [7], [8],
continued with a study of the link between entropy and numerical viscosity in [9], and more recently summarized and
further expanded in [10].

In the present work, we describe techniques for the construction of numerical schemes which are linked to the
concept of entropy for systems of conservation laws. The paper starts with a brief summary of the basic analytical
results involving the entropy, and of the main difficulties of numerical schemes for conservation laws in §2. Then,
§3 contains the construction of entropy stable schemes from [10], exploring the link between numerical diffusion and
entropy stability. Next the generalization to higher order schemes designed in [11, 12] is described, and we show
numerical results illustrating the entropy dissipation of these schemes, especially in the fully discrete case, where the
entropic behavior of very common time discretizations is not well known yet. Next in §4 our work [13, 14] is described
on the use of entropy residuals to obtain a local estimate of the truncation error of the scheme, based on the computed
numerical solution. This tool permits to construct a reliable a posteriori error indicator to drive the construction of a
locally adaptive grid, following the unsteady structure of the numerical solution. It is also possible to use the error
indicator to modify the method locally (scheme adaptivity), applying high order schemes only on smooth portions of
the solution, and/or using the costly non linear devices that prevent the onset of spurious oscillations only where they
are actually needed.
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Several important results have not found space in this review. A posteriori error control based on entropy residuals
can also be found in [15], [16] and recently summarized in [17]. The error indicator proposed and analyzed in these
works relies on the family of Kruzkhov’s entropies for multidimensional scalar conservation laws. These results
are rigorous, but they lack the simplicity and the localization of the indicator proposed in [13, 14] and described
below. Moreover, these results depend heavily on the family of entropies for scalar conservation laws, and cannot be
generalized easily to hyperbolic systems of equations.

An original approach to the role of entropy in the analysis of systems of conservation laws can be found in [18]
and its copious references. Here entropy inequalities are derived minimizing the entropy of kinetic BGK models
converging to given systems of conservation laws, as relaxation parameters go to zero. The entropy pairs of systems
of conservation laws are naturally obtained studying the convergence towards equilibrium of the BGK system. This
approach follows extensive work on the connection between systems of conservation laws and kinetic models, which
provides a promising alternative to the idea of characterizing weak solutions through viscous profiles. Note also that
through kinetic approximations many numerical schemes for systems of conservation laws have been derived, see
[19, 20].

Finally, in [21], a measure of the entropy residual is used to modify the scheme locally. The scheme proposed is a
high order linear scheme, without the usual non linear devices preventing the onset of spurious oscillations. Here, the
non oscillatory behavior of the solution is preserved adding a degenerate parabolic term which is turned on when the
entropy residual surpasses a given threshold.

2. Conservative schemes and entropy dissipation

In this section, we recall the main properties of the numerical solution of conservation laws. Classical references
are [2] and [22] and, more recently, [1] for the analysis of solutions of systems of conservation laws. Several textbooks
contain descriptions of the treatment of numerical integration of conservation laws, in particular see [4] and [3].

We start considering the single scalar conservation law with initial condition:

∂u
∂t

+
∂ f (u)
∂x

= 0, u(x, t = 0) = u0(x). (2)

As long as the solution is smooth, there is a unique classical solution, which can be constructed with the method
of characteristics. However, it is easy to see that discontinuities may form in finite time, even from smooth initial
data. The method of characteristics in fact breaks down if two (or more) characteristics intersect at the same point
and a shock develops. In this case, the solutions of the conservation law must be understood in the weak sense.
Multiply the conservation law by a smooth test function φ with compact support, and integrate in space and time for
t ∈ [0,∞) = R+ and x ∈ R. Integrating by parts, the boundary terms pick up only the initial condition, and the weak
form of the conservation law is found:∫ ∞

0

∫ +∞

−∞

[
φtu + φx f (u)

]
dx dt = −

∫ +∞

−∞

φ(x, 0)u(x, 0) dx (3)

∀φ ∈ C1
0(R ×R+). The weak solutions obtained from (3) admit discontinuities satisfying the Rankine-Hugoniot jump

conditions which dictate the speed at which such solutions can travel. To see on an easy example that the Rankine
Hugoniot condition derives from the weak form of the conservation law, we consider the following initial data with a
jump:

u(x, t = 0) = u0(x) =

uL x < 0
uR x ≥ 0.

(4)

The situation is depicted in Fig. 1. Clearly by similarity, this step will travel with constant speed s, so that the solution
will be:

u(x, t) =

uL x < st
uR x ≥ st.
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uL

uR

uL

uR

s∆t

Figure 1: Advection of a step function

Substituting this information in the weak form, one finds:∫ ∞

0

∫ st

−∞

φtuL dx dt +

∫ ∞

0

∫ ∞

st
φtuR dx dt +

[
f (uL) − f (uR)

] ∫ ∞

0
φ(st, t) dt = −

∫ +∞

−∞

φ(x, 0)u(x, 0) dx,

which, after some algebra, reduces to:

[
s(uL − uR) − ( f (uL) − f (uR))

] ∫ ∞

0
φ(st, t) dt = 0, ∀φ ∈ C1

0(R × R+).

Since this equation holds for all test functions, the speed of the jump must satisfy the equation

s(uL − uR) = f (uL) − f (uR). (5)

In the scalar case the above relation reduces to

s =
f (uL) − f (uR)

uL − uR
, (6)

which dictates the speed at which a discontinuity will move. The Rankine Hugoniot condition is linked to the conser-
vation of the amount (mass) of u present in the flow. Let M(t) =

∫ b
a u(x, t) dx be the amount of u present in an interval

(a, b) containing the origin, and consider again the step-like initial condition given above. From Fig. 1, one can see
that the mass at time t + ∆t is given by M(t + ∆t) = M(t) + s∆t(uL − uR). On the other hand, the variation of mass is
given by the net flux leaving the interval (a, b) in the time ∆t, so M(t + ∆t) = M(t) + ∆t( f (uL) − f (uR)), and equating
these two expressions the Rankine Hugoniot condition results.

The weak form (3) extends the class of possible solutions of (2), but uniqueness is lost. To recover uniqueness,
some further constraints must be imposed. Typically, many systems of conservation laws derive from models of math-
ematical physics, and are approximations of parabolic systems of equations, with small viscous coefficients. Thus,
one is interested in a weak solution possessing a viscous profile, that is a solution that can be obtained as the vanishing
viscosity limit of a solution of the parabolic system. It is possible to prove [2, Chapter 20] that vanishing viscosity
solutions satisfy entropy inequalities which can be constructed in the following fashion. Suppose the conservation law
is endowed with an entropy pair η(u), ψ(u) such that η is convex and ψ satisfies η′(u) f ′(u) = ψ′(u). Note that at least
in the scalar case infinite entropies can be found. Multiplying the conservation law by η′ one finds that for smooth
flows:

∂η

∂t
+
∂ψ(u)
∂x

= 0.

If shocks develop, the vanishing viscosity weak solution satisfies the inequality:

∂η

∂t
+
∂ψ(u)
∂x

≤ 0
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which again should be understood in the weak sense:∫ ∞

0

∫ +∞

−∞

[
φtη(u) + φxψ(u)

]
dx dt ≥ −

∫ +∞

−∞

φ(x, 0)η(u(x, 0)) dx (7)

∀φ ∈ C1
0(R × R+), φ ≥ 0. Note that this time the sign of the test function must be prescribed, so that the sign of the

expression being integrated does not depend on the sign of φ. Considering again the step like initial condition (4), the
weak form of the entropy inequality reduces to:

(η(uR) − η(uL))s − (ψ(uR) − ψ(uL)) ≥ 0, (8)

where again s is the speed of the discontinuity. The inequality above selects which initial steps result in entropic
shocks, according to the entropy η. See also [23].

The vanishing viscosity solutions satisfy entropy inequalities (7) for all admissible entropies, that is for all en-
tropy pairs satisfying the compatibility condition η′ f ′ = ψ′, thus the entropy inequality is a necessary condition for
uniqueness. In the scalar case, all convex functions are admissible entropies, and Kruzkov in 1970 proved that a weak
solution of the conservation law satisfying the entropy inequality for all admissible entropies is unique, [3, chapt 2].
This important result holds also in the multidimensional case. For systems of conservation laws, the existence of an
entropy pair is not guaranteed, even though systems deriving from physics usually admit entropy inequalities, as in
gas dynamics. However, even for systems which have entropies, the entropy condition is not sufficient to establish
uniqueness in the general case, see [1].

Naturally, in the numerical integration of conservation laws, it is desirable to preserve the properties outlined
above. The main tools are the Lax-Wendroff theorem, to prove convergence to weak solutions, and the discrete
version of the entropy inequality, to prove that a certain scheme produces numerical solutions satisfying the entropy
condition.

The computational domain is discretized with a grid in space and time which, in this section, we suppose to be
uniform. Let (x j, tn) denote the grid points, and suppose that the mesh is characterized by a width h in space and a
time step k. Introduce the control volumes Vn

j = (x j − h/2, x j + h/2) × [tn, tn + k), and the cell averages un
j at time tn

defined as:

un
j =

1
h

∫ x j+h/2

x j−h/2
u(x, tn) dx.

Integrating the conservation law in space and time on the control volume Vn
j , the finite volume formulation for the

cell averages u is obtained:

un+1
j = un

j −
1
h

[∫ k

0
f
(
u(x j +

h
2
, tn + t)

)
dt −

∫ k

0
f
(
u(x j −

h
2
, tn + t)

)
dt

]
, (9)

Note that this relation is exact, and must hold for all control volumes. On the chosen grid, the conservation law reduces
to a system of finite volume equations for the cell averages. Note however that this system of equations is not closed,
because the equations provide the evolution of the cell averages in terms of fluxes evaluated at the cell interfaces. To
obtain the evolution of the cell averages from the finite volume equations, one should extract pointwise information
from the cell averages, to compute the integral of the fluxes at the cell interfaces. Numerical schemes in conservation
form mimic this structure. Let U denote the numerical solution. Then a numerical scheme in conservation form can
be written as:

U
n+1
j = U

n
j −

k
h

(
Fn

j+1/2 − Fn
j−1/2

)
(10)

where Fn
j+1/2 is the numerical flux function. For the time being, we consider very simple schemes, for which the

solution U
n+1
j at time tn+1 depends only on the numerical solution at the previous time step tn at three grid points. In

this case, the numerical flux function will depend on two grid points, namely Fn
j+1/2 = F(U

n
j ,U

n
j+1), and the function

F must satisfy the following properties:

• F(U,U) = f (U), (consistency)
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• F(U j,U j+1) is at least Lipschitz continuous.

Numerical solutions obtained with conservative schemes are good solutions, in the sense that, if they converge,
they converge to weak solutions. This is the content of the Lax Wendroff theorem:

Theorem 2.1. Lax Wendroff theorem. Let Uh(x, t) be a numerical solution obtained on a grid of width h. Suppose
that:

• Uh is bounded in L∞ uniformly in h;

• Uh → U as h goes to zero in L1 on every bounded rectangle in R × R+, with k/h fixed;

• Uh is obtained with a conservative scheme.

Then the limit solution is a weak solution of the conservation law.

The theorem assumes the existence of a sequence of numerical solutions, which are indexed by the mesh width h.
The functions in the sequence must enjoy some sort of stability, and the sequence must be convergent. If moreover all
functions in the sequence are obtained with a conservative scheme, then the limit solution is guaranteed to satisfy the
weak form of the conservation law (3), and thus to contain shocks satisfying the Rankine Hugoniot jump conditions.

The proof is interesting, see [3], and is based on the following ingredients:

• multiply the conservative form of the scheme by a test function φ, summing over all grid points in space and
time;

• sum by parts, discharging the differences from U and F j+1/2 on φ;

• pass to the limit for h → 0, using the boundedness of Uh, the convergence of Uh, and the consistency of the
numerical flux F, and get the weak form of the conservation law.

Note that when summing by parts all interior terms can be grouped together in pairs, because, thanks to the conserva-
tive form, the fluxes are evaluated at the interfaces, and therefore they always appear twice: once as flux exiting from
the cell Vn

j , and the second time as flux entering the cell Vn
j+1. This point is important, and we illustrate it using again

the initial condition (4). Suppose the computational domain is the interval [a, b] which is large enough to contain the
initial step up to a final time T . Let x ja = a + h

2 and x jb = b − h
2 be the grid points at the end points of the interval.

Then the total mass contained in the interval [a, b] at time tn < T is given by:

M(tn) =

jb∑
j= ja

U
n
j h

Applying the conservative scheme (10), the total mass at time tn+1 < T is given by:

M(tn + k) =

jb∑
j= ja

U
n+1
j h

=

jb∑
j= ja

[
U

n
j −

k
h

(
Fn

j+1/2 − Fn
j−1/2

)]
h

= M(tn) − k
(
Fn

jb+1/2 − Fn
ja−1/2

)
,

where all interior terms cancel out because the conservative structure of the scheme ensures that whatever flows out a
cell, flows into the following cell. At the boundary the consistency of the scheme can be applied. Here by hypothesis
the solution is constant, so:

Fn
jb+1/2 = F(U

n
jb ,U

n
jb+1) = F(uR, uR) = f (uR) Fn

ja−1/2 = F(U
n
ja−1,U

n
ja ) = F(uL, uL) = f (uL)



G. Puppo, M. Semplice / Physics Procedia 00 (2011) 1–28 7

Substituting this information above, it can be seen that the scheme provides the exact evolution of the total mass of
the system, and thus the speed of propagation of shocks is also exact. In more general cases, the propagation speed of
shocks will not be exact, because the end points of the jump may depend on time and they will not be evolved exactly,
but we wish to stress the fact that no error in the propagation speed will occur if the end points of the jump are evolved
correctly, even though the shock may be spread on several cells. This in turn is guaranteed by the fact that evaluating
the total mass, the numerical fluxes cancel out for interior cell boundaries.

In other words, to preserve global properties, such as convergence, the numerical flux functions do not need to
be sophisticated, as long as they are consistent and they are evaluated at cell boundaries, as in (10). Convergence
means that the numerical solution approximates the true solution as h → 0, but how small should h be before the
error between the numerical and the true solution lies below a given threshold remains unknown. Naturally, one is
interested in the behavior of the solution for a finite mesh size. But for a finite value of h convergence theorems are
not helpful. In this case, error estimates are needed, as in [24] or [17], and a posteriori error estimators [17, 25, 14].
As a matter of fact, a convergent scheme may be quite lowsy locally, for a finite mesh width.

To transfer the entropy condition to the discrete level, integrate the entropy inequality over the control volumes Vn
j

defined above as in (9), obtaining:

1
h

∫ x j+h/2

x j−h/2

[
η(u(x, tn+1)) − η(u(x, tn))

]
dx +

1
h

∫ k

0

[
ψ(u(x j+1/2, tn + t)) − ψ(u(x j−1/2, tn + t))

]
dt ≤ 0. (11)

This inequality involves the unknown exact solution, and it should be extended to the numerical solution. The finite
volume conservative scheme (10) constructs the solution as a sequence of point values which coincide with the cell
averages of the numerical solution. These point values are used to define a piece-wise constant function U(x, t) as
follows:

U(x, t) = U
n
j (x, t) ∈ [x j −

h
2 , x j + h

2 ) × [tn, tn+1). (12)

Note that this reconstruction is conservative, in the sense that it preserves the amount of mass U:∫ x j+h/2

x j−h/2
U(x, t) dx = U

n
j h t ∈ [tn, tn+1).

With this assumption, one can evaluate the space integral in the entropy inequality. For the integral in time, which
involves the entropy fluxes, numerical entropy fluxes are constructed. For a 3-point scheme with numerical flux
Fn

j+1/2 = F(U
n
j ,U

n
j+1), the numerical entropy flux will be a function Ψn

j+1/2 = Ψ(U
n
j ,U

n
j+1), satisfying the following

properties:

• Ψ(U,U) = ψ(U), (consistency)

• Ψ(U j,U j+1) is at least Lipschitz continuous.

Substituting this information in the finite volume formulation of the entropy inequality (11), it is found that the
numerical solution should satisfy the discrete entropy inequality:

η
(
U

n+1
j

)
− η

(
U

n
j

)
+

k
h

[
Ψn

j+1/2 − Ψn
j−1/2

]
≤ 0. (13)

A scheme satisfying the discrete entropy condition and the hypotheses of the Lax-Wendroff theorem converges to an
entropy satisfying weak solution. In the scalar the following theorem holds [3]:

Theorem 2.2. Convergence to the entropic solution. Let Uh(x, t) be a numerical solution obtained on a grid of
width h. Suppose that:

• Uh is bounded in L∞ uniformly in h;

• Uh → U as h goes to zero in L1 on every bounded rectangle in R × R+, with k/h fixed;

• Uh is obtained with a conservative scheme.
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• Uh satisfies the cell entropy inequality (13) with a consistent entropic flux Ψ constructed for all admissible
entropy pairs η, ψ and for all h.

Then the limit solution is the unique entropic weak solution of the conservation law.

The proof is very similar to the proof of the Lax Wendroff theorem, and shows that the limit solution U satisfies
the weak form of the entropy inequality (7) for all admissible entropies. Again, the proof relies on the fact that the
numerical entropy fluxes are evaluated at the cell interfaces, see [3].

3. Numerical diffusion and entropy stable schemes

In this section we will start our review of numerical schemes obtained using the entropy as a tool to design
numerical schemes. This section starts with the notion of entropy conservative and entropy stable schemes introduced
in [9] and expanded in [10]. Next, we show a few typical results in the one-dimensional scalar case. The section ends
with a description of the high order entropy stable schemes of [12].

The easiest conservative scheme one can think of has the simple numerical flux Fn
j+1/2 = 1

2

(
f (U

n
j ) + f (U

n
j+1)

)
,

leading to

U
n+1
j = U

n
j −

k
2h

(
f (U

n
j+1) − f (U

n
j−1)

)
.

This scheme is however disastrous, since it is unstable for all k. Using discrete Fourier analysis for the equation
ut + aux = 0, it is easy to see that this scheme actually introduces a negative numerical diffusion, since its modified
equation has the form:

ut + aux = −
1
2

ka2uxx.

The viscosity in this equation is ν = − 1
2 ka2, and the numerical solution will blow up exponentially for every choice of

the timetep k. Thus, the scheme must be modified adding a diffusive term. The simplest choice is:

U
n+1
j = U

n
j −

k
2h

(
f (U

n
j+1) − f (U

n
j−1)

)
+

k
2h

Q
(
U

n
j+1 − 2U

n
j + U

n
j−1

)
Let λ = k

h denote the mesh ratio, which, in this section, will be constant. The parameter Q must be determined in order
to ensure that the scheme preserves the monotonicity of the solution, in order to avoid spurious oscillations. Schemes
satisfying this request are called monotone, and they can be characterized by the constraints

∂U
n+1
j

∂U
n
j+l

≥ 0 l = −1, 0, 1.

It is easy to see that the scheme above is monotone, provided that Q ≥ max | f ′(u)|, with λQ ≤ 1, which implies also the
CFL condition. These schemes can be proven to satisfy all entropy inequalities, and thus they converge to the unique
entropy solution in the scalar case, [3, 26]. More generally, the following modified numerical flux is introduced:

F j+1/2 =
1
2

(
f (U

n
j ) + f (U

n
j+1)

)
−

1
2

Q j+1/2

(
U

n
j+1 − U

n
j

)
. (14)

This scheme is monotone if Q j+1/2 ≥ f ′(U j+1),Q j−1/2 ≥ − f ′(U j−1) and 1
2λ(Q j+1/2 + Q j−1/2) ≤ 1. Most first order

numerical schemes can be written in this form. The Local Lax Friedrichs scheme for instance has a coefficient of
numerical viscosity given by

Q j+1/2 = max(| f ′(U j+1)|, | f ′(U j)|).

Monotone schemes are nice, because they converge to the exact solution, but they are limited to first order accuracy
[4]. This means that to get an accurate solution very fine grids are needed, and jumps in the numerical solution,
especially for contact discontinuities, are smeared on several grid points. We illustrate this behavior on the simple
advection equation ut + ux = 0 with periodic boundary conditions, considering the evolution of a square wave using
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(a) (b)

Figure 2: Linear advection of a square wave with the Lax Friedrichs scheme, N = 100,N = 200,N = 400,N = 800 cells. (a) T = 8, (b) T = 32.

the Lax Friedrichs scheme, with Q j+1/2 = 1 which gives the minimum amount of numerical dissipation in this case,
and λ = 0.9, see Fig. 2.

It is clear that the profile is smeared as time increases, even for very fine grids. Clearly this scheme is too diffusive.
In this case, the same results would be obtained with the Godunov scheme which, in the linear case, has a coefficient
of numerical viscosity Q j+1/2 = |a|, where a is the propagation speed. In order to reduce drastically the artificial
diffusion, a possibility is to increase the order of the scheme. Fig. 3 shows the effect of increasing the order of
accuracy, on a smooth solution for long integration times (here the initial hump completes its period 8 times). While
the first order scheme is still far away from the exact solution with N = 800 grid points, the second order solution is
almost coinciding with the exact solution with only 200 grid points. However, using a standard second order scheme
on a discontintinuity, the solution starts oscillating. The Lax Wendroff scheme for the linear advection equation
ut + aux = 0 can be written in viscosity form (14) with a coefficient Q j+1/2 = λa2. Since for stability λ < 1/|a|, the
Lax Wendroff scheme indeed has a smaller viscosity than the Godunov scheme, but the problem is that it has too little
viscosity. The problem than is: is it possible to say what is the minimum amount of viscosity that a numerical scheme
should have?

Entropy conservative schemes address exactly this issue. Since it is known that for convergence a numerical
scheme should dissipate entropy, at least on shocks, a starting point is to construct schemes which dissipate no entropy.
Then the numerical diffusion inherent in these schemes can be used as a benchmark to set the minimum numerical
diffusion that a scheme should have. This idea has been developed by Tadmor in a series of papers [8], [9] and the
review [10]. Here we illustrate the behavior of the schemes for scalar conservation laws, but the main setting will be
described for systems of equations.

In this section, we consider one-dimensional systems of m conservation laws:

ut + fx(u) = 0, A(u) = fu(u). (15)

Again, the system is hyperbolic, i.e. the Jacobian matrix A(u) has m real eigenvalues and a complete set of eigenvectors
∀u.

Recall that an entropy pair (η, ψ) for the system (15) is a couple of functions η(u) and ψ(u) such that η is convex
(i.e. the Hessian ηuu is a positive definite symmetric matrix) and ψ satisfies the compatibility relation

(ηu)T A(u) = (ψu)T . (16)

For example gas dynamic equations have a family of entropy pairs of the form

η(u) = −ρh(S ), ψ(u) = −mh(S ), u = [ρ,m, E]T , S = ln(pρ−γ) (17)
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(a) (b)

Figure 3: Linear advection of a smooth function with the Lax Friedrichs scheme, and with the Lax Wendroff scheme N = 100,N = 200,N =

400,N = 800 cells, up tp T = 32. (a) Lax-Friedrichs, (b) Lax-Wendroff.

where ρ is the density, m is momentum, E is the density of total energy, S is the specific entropy, p is the pressure and
γ is the ratio of specific heats. The scalar function h must satisfy the properties h′ − γh′′ > 0, h′ > 0, [6]. In particular
for h(S ) = S we recover the standard entropy used in gas dynamics.

Introduce the entropy variables v(u) = ηu. Since the Jacobian of the transformation is ηuu, which is invertible,
the map associating the conservative variables u to the entropy variables is invertible. Entropy variables are used to
rewrite the sytem of conservation laws in symmetric form:

∂tu(v) + ∂xg(v) = 0, g(v) = f (u(v)). (18)

In fact, carrying out differentiation, the system becomes

uv∂tv + fuuv∂xv = (ηuu)−1∂tv + A(u)(ηuu)−1∂xv = 0,

in which the matrix A(u)(ηuu)−1 is symmetric, because of the compatibility condition (16). However, here the interest-
ing point is that entropy variables permit to introduce the entropy potentials φ and θ:

φ(v) = v · u(v) − η(u(v)) (19)
θ(v) = v · g(v) − ψ(u(v)), (20)

where u · v denotes the inner product between the vectors u and v. Note that φ′(v) = u(v) while θ′(v) = g(v).

3.1. Semidiscrete entropy stable schemes

Entropy stable schemes are first defined in the semidiscrete case, in which only the space discretization is consid-
ered, while time is left as a continuous variable. The original system (15) is re-written in terms of entropy variables,
and on this system a semidiscrete conservative scheme is applied:

d
dt

u(v) j +
1
h

(
G j+1/2 −G j−1/2

)
= 0 (21)

where G j+1/2 denotes a numerical flux consistent with the flux function g(u(v)). The aim is to compute a numerical
flux G∗j+1/2 such that the scheme above is entropy conservative, in the sense that a local cell entropy equality is satisfied
in each cell:

d
dt
η(u) j +

1
h

(
Ψ j+1/2 − Ψ j−1/2

)
= 0 (22)
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for some consistent numerical entropy flux Ψ. In particular, let [10]:

Ψ j+1/2 = Ψ(v j, v j+1) =
1
2

(v j + v j+1) ·G j+1/2 −
1
2

(
θ(v j) + θ(v j+1)

)
. (23)

Note that, on grid values, u j = u(v j), and f (u j) = g(v j). It is easy to check that the expression above defines a
consistent entropy flux, provided G j+1/2 is also consistent with the flux g(v). Now the entropy dissipation due to the
scheme can be computed:

d
dt
η(u) j +

1
h

(
Ψ j+1/2 − Ψ j−1/2

)
= v j

d
dt

u j +
1
h

(
Ψ j+1/2 − Ψ j−1/2

)
.

Substituting the numerical entropy flux (23) with G∗j+1/2, and the expression for d
dt u(v) j using (21), the entropy dissi-

pation becomes

−
1
h

v j

(
G∗j+1/2 −G∗j−1/2

)
+

1
2h

(
(v j + v j+1) ·G∗j+1/2 −

(
θ(v j) + θ(v j+1)

)
− (v j + v j−1) ·G∗j−1/2 +

(
θ(v j) + θ(v j−1)

))
= 0

Rearranging terms

1
2h

[
(v j+1 − v j) ·G∗j+1/2 −

(
θ(v j+1) − θ(v j)

)
+ (v j − v j−1) ·G∗j−1/2 −

(
θ(v j) − θ(v j−1)

)]
= 0

and clearly the equality holds, provided that

G∗j+1/2 · (v j+1 − v j) = θ(v j+1) − θ(v j). (24)

So, with this choice the entropy dissipation in (22) is zero. On the other hand, if the numerical flux G j+1/2 satisfies

G j+1/2 · (v j+1 − v j) ≤ θ(v j+1) − θ(v j), (25)

the left hand side of (22) is negative and entropy dissipation occurs within the cell.

Definition 3.1. Entropy conservative and entropy stable schemes
A numerical scheme is entropy conservative if its numerical flux G j+1/2 satisfies (24). It is entropy stable if its numer-
ical flux satisfies (25).

Note that a numerical flux G j+1/2 in the entropy variables induces a corresponding numerical flux in the conservative
variables: F j+1/2 = F(U j,U j+1) = G(v j, v j+1) = G j+1/2. In the scalar case, the entropy conservative flux is unique:

G∗j+1/2 =
θ(v j+1) − θ(v j)

v j+1 − v j
.

For systems of equations, several choices are possible, since (24) is a single scalar constraint.

Example 3.2. Burgers’ equation
For Burgers’ equation f (u) = 1

2 u2. Choosing the entropy η(u) = 1
2 u2, the entropy flux is ψ(u) = 1

3 u3. The entropy
variable in this case is simply v(u) = u and the entropy potential is θ(u) = 1

6 u3. Thus the entropy conservative flux is

F∗j+1/2 = F∗(U j,U j+1) =
1
6

(
U2

j+1 + U j+1U j + U2
j

)
.

As the example shows, the entropy conservative flux is linked to the particular entropy chosen. This is not a problem
in the scalar case for convex flux functions, since in this case entropy stability for the quadratic entropy is enough to
select the unique entropic solution, see [10, 27].

Now, it is possible to rewrite the entropy conservative scheme in viscous form, to emphasize the numerical vis-
cosity of these schemes. It is convenient to rewrite the viscous form of the scheme in terms of entropy variables:

G j+1/2 =
1
2

(
f (U

n
j ) + f (U

n
j+1)

)
−

1
2

Q̃ j+1/2

(
vn

j+1 − vn
j

)
.
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Substituting this expression in (25), and using (24), one finds that the viscosity of an entropy stable scheme must
satisfy

−
1
2

Q̃ j+1/2||v j+1 − v j||
2 ≤ −

1
2

Q̃∗j+1/2||v j+1 − v j||
2,

which gives
Q̃∗j+1/2 ≤ Q̃ j+1/2, (26)

that is any entropy stable scheme must contain more numerical viscosity than an entropy conservative one. Note that
in the scalar case

Q̃ j+1/2 = Q j+1/2
U j+1 − U j

v j+1 − v j
,

and since v(u) is a monotone increasing function of u, the fraction on the right hand side is always non-negative. Thus
the viscosity coefficients of entropy stable schemes must satisfy

Q∗j+1/2 ≤ Q j+1/2. (27)

The entropy conservative coefficient of numerical viscosity Q∗j+1/2 depends on the particular entropy chosen. It is
interesting to see what is the maximum of Q∗j+1/2 over all possible entropies. To compute this value, rewrite Q∗j+1/2 as

Q∗j+1/2 =
f (U j) + f (U j+1) − 2F∗j+1/2

U j+1 − U j

and compute the supremum over all possible entropies. It has been proven [8, 7] that the supremum is achieved
by Godunov flux. Thus an entropy stable scheme, which is uniformly stable for all entropies, has a coefficient of
numerical viscosity Q j+1/2 which is larger than the coefficient of viscosity of the Godunov scheme. These are the so
called E-schemes [7], which are again first order schemes.

However, it is easy to see, at least in the scalar case, that entropy conservative schemes are second order accurate.
In fact, the entropy conservative flux G∗j+1/2 can be written as

G∗j+1/2 =
1

v j+1 − v j

∫ v j+1

v j

θ′(v) dv =
1

v j+1 − v j

∫ v j+1

v j

g(v) dv,

where the definition of the entropy potential (19) has been applied. Introduce the change of variables v j+1/2(ξ) =
1
2 (v j + v j+1) + ξ(v j+1 − v j). The expression above becomes

G∗j+1/2 =

∫ 1/2

−1/2
g(v j+1/2(ξ)) dξ.

Integrating by parts, one obtains

G∗j+1/2 =
1
2

(g(v j+1) + g(v j)) −
∫ 1/2

−1/2
ξg′(v j+1/2(ξ))(v j+1 − v j) dξ.

Substituting the viscous coefficient Q j+1/2, this expression gives

Q∗j+1/2 =

∫ 1/2

−1/2
2ξg′(v j+1/2(ξ))(v j+1 − v j) dξ.

Integrating by parts again, the following expression for Q∗ is finally found:

Q∗j+1/2 = (v j+1 − v j)
(∫ 1/2

−1/2

(
1
4
− ξ2

)
g′′(v j+1/2(ξ)) dξ

)
,
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which shows that Q∗j+1/2 = O(v j+1 − v j) = O(h). Therefore the resulting scheme

dU j

dt
= −

λ

2

(
f (U j+1) − f (U j−1)

)
+
λ

2

(
Q∗j+1/2(v j+1 − v j) − Q∗j−1/2(v j − v j−1)

)
is second order accurate in space and it conserves entropy. To obtain a second order entropy stable flux therefore one
possibility is to increase the artificial diffusion of an entropy conservative scheme with a term of order v j+1 − v j. Thus
the numerical flux [9] is modified as

G j+1/2 = G∗j+1/2 −
1
2

D j+1/2, (28)

where
D j+1/2 = α j+1/2(v j+1 − v j) (29)

and α j+1/2 is a positive coefficient. For instance one can take α j+1/2 = max(| f (U j)|, | f (U j+1)|). The entropy dissipation
due to this scheme can be computed defining the numerical entropy flux as in (23) and it is given by:

d
dt
η(U) j +

1
h

(
Ψ j+1/2 − Ψ j−1/2

)
= −

1
4h

[
D j+1/2(v j+1 − v j) + D j−1/2(v j − v j−1)

]
(30)

= −
1

4h

[
α j+1/2(v j+1 − v j)2 + α j−1/2(v j − v j−1)2

]
.

Note that the entropy dissipation has the correct sign if α j+1/2 ≥ 0, thus yielding an entropy stable scheme. This
construction can be easily extended to systems of equations. Now the space contribution to the cell entropy dissipation
can be computed as

S (x)
j = −

1
4h

[
(v j+1 − v j)Tα j+1/2(v j+1 − v j) + (v j − v j−1)Tα j−1/2(v j − v j−1)

]
, (31)

where α j+1/2 will be positive definite matrices. In the scalar case, the entropy stable scheme constructed above has an
artificial diffusion coefficient

Q j+1/2 = Q∗j+1/2 +
D j+1/2

v j+1 − v j
.

Therefore, if the numerical diffusion term is defined as in (29), Q j+1/2 = O(1) and thus the scheme is only first order
accurate. To obtain higher order schemes the diffusion term defined in (29) must be modified, following [12]. See
§3.3.

3.2. The fully discrete problem

Numerical solutions are obtained with fully discrete schemes, in which the time derivative of u is discretized
usually with Runge-Kutta schemes or multistep methods. Therefore, in order to ensure entropy stability of the final
solution, the entropy production due to time discretizations must be computed. This problem is addressed in [10],
where it is proven that the Explicit Euler scheme creates spurious entropy, while the second order implicit Crank
Nicolson scheme is entropy conservative, and the Implicit Euler scheme dissipates entropy, thus improving the sta-
bility of entropy stable space discretizations. A more general approach can be found in [28, 11] where implicit high
order entropy conservative schemes are constructed.

Most schemes for hyperbolic systems of conservation laws are explicit. The theoretical results imply that in order
to achieve entropy stability it is necessary to counterbalance the entropy production due to the explicit time integration
with the entropy dissipation of the space part. It is possible to follow the bounds on [10] for the Explicit Euler scheme
to obtain entropy stable schemes for a first order in time explicit integration. However the entropy behavior of higher
order explicit time discretizations is less known.

The analysis in [10] considers a few prototype cases. We start from the Backward Euler scheme. In this case, the
cell entropy dissipation of the fully discrete scheme can be defined as

S j =
1
k

(
η(v)n+1

j − η(v)n
j

)
+

1
h

(
Ψn+1

j+1/2 − Ψn+1
j−1/2

)
. (32)
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Adding and subtracting the quantity 1
k vn+1

j · (U
n+1
j −Un

j ), S j can be broken up in the two contributions S j = S (x)
j + S (t)

j ,
defined below:

S (x)
j =

1
k

vn+1
j · (Un+1

j − Un
j ) +

1
h

(
Ψn+1

j+1/2 − Ψn+1
j−1/2

)
(33)

= −
1
h

vn+1
j · (Gn+1

j+1/2 −Gn+1
j−1/2) +

1
h

(
Ψn+1

j+1/2 − Ψn+1
j−1/2

)
S (t)

j =
1
k

(
η(vn+1

j ) − η(vn
j )
)
−

1
k

vn+1
j · (Un+1

j − Un
j ). (34)

S (x)
j has already been computed in (31). Note that the diffusion terms will also be evaluated implicitly. For S (t)

j , the
first term, dropping the index j, can be rewritten as:

η(vn+1) − η(vn) =

∫ vn+1

vn
ηv(v) dv =

∫ vn+1

vn
ηu(u)uv dv.

Let H(v) = (ηuu)−1 = uv, which is a symmetric positive definite matrix. Recall that v = ηu(u), and change variables as
vn+1/2(ξ) = 1

2 (vn+1 + vn) + ξ(vn+1 − vn):

η(vn+1) − η(vn) =

∫ 1/2

−1/2
vn+1/2H(vn+1/2)(vn+1 − vn) dξ. (35)

The second term, dropping again the index j, can be written as

vn+1 · (Un+1 − Un) = vn+1
∫ vn+1

vn
uv dv = vn+1

∫ 1/2

−1/2
H(vn+1/2)(vn+1 − vn) dξ.

Subtracting this expression from the one above, the entropy dissipation due to the time discretization can be written
as

S (t)
j = −

1
k

∫ 1/2

−1/2

(
1
2
− ξ

)
(vn+1 − vn)T H(vn+1/2)(vn+1 − vn) dξ ≤ 0. (36)

Therefore, the Backward Euler differentiation introduces a negative term to the cell entropy dissipation, thus enhancing
entropy stability. For the Forward Euler scheme, the cell entropy dissipation can be defined as

S j =
1
k

(
η(v)n+1

j − η(v)n
j

)
+

1
h

(
Ψn

j+1/2 − Ψn
j−1/2

)
. (37)

This time, add and subtract the quantity 1
k vn

j · (U
n+1
j − Un

j ). The total entropy dissipation S j will now be given by the

two contributions S j = S (x)
j + S (t)

j defined as

S (x)
j = −

1
h

vn
j · (G

n
j+1/2 −Gn

j−1/2) +
1
h

(
Ψn

j+1/2 − Ψn
j−1/2

)
(38)

S (t)
j =

1
k

(
η(v)n+1

j − η(v)n
j

)
−

1
k

vn
j · (U

n+1
j − Un

j ). (39)

Again, S (x)
j is already known from (31), except that now the diffusion terms will be computed explicitly. For S (t)

j , the
first term has already been computed in (35), and the following expression results:

S (t)
j =

1
k

∫ 1/2

−1/2

(
1
2

+ ξ

)
(vn+1 − vn)T H(vn+1/2)(vn+1 − vn) dξ ≥ 0. (40)

Thus, for the explicit Euler differentiation the entropy dissipation is positive, and therefore to achieve entropy stability,
the time step k must be reduced, in order to ensure that S (t)

j < |S (x)
j |. This is found in [10] at the price of a suboptimal
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(a) (b)

Figure 4: Linear advection of a smooth function with entropy conservative space differencing, N = 100,N = 200,N = 400,N = 800 cells, up
to T = 32. (a) Crank Nicolson, (b) Backward Euler.

CFL condition. Finally, consider the Crank Nicolson scheme, which, unlike [10], we use in its standard form. The
cell entropy production will be given by:

S j =
1
k

(
η(vn+1

j ) − η(vn
j )
)

+
1
2h

(
Ψn+1

j+1/2 + Ψn
j+1/2 − Ψn+1

j−1/2 − Ψn
j−1/2

)
(41)

Using the same techniques illustrated above, and (31), the space and time entropy dissipations will be given by:

S (x)
j = −

1
8h

[
(vn+1

j+1 − vn+1
j )Tα j+1/2(vn+1

j+1 − vn+1
j ) + (vn

j+1 − vn
j )

Tα j+1/2(vn
j+1 − vn

j )

+ (vn+1
j − vn+1

j−1 )Tα j−1/2(vn+1
j − vn+1

j−1 ) + (vn
j − vn

j−1)Tα j−1/2(vn
j − vn

j−1)
]
,

S (t)
j =

1
k

∫ 1/2

−1/2
ξ (vn+1

j − vn
j )

T H(vn+1/2
j )(vn+1

j − vn
j ) dξ.

For the scalar case, one can choose the quadratic entropy η(u) = 1
2 u2, which gives H(v) ≡ 1, and S (t)

j = 0. This shows,
that for the scalar case, the Crank Nicolson scheme is entropy conservative.

Now, we want to show a few numerical results illustrating the behavior of entropy conservative schemes in the
scalar case. We consider the linear advection problem ut + aux = 0, with the quadratic entropy η(u) = 1

2 u2. As already
noted, in this case v(u) = u. The entropy flux is ψ(u) = 1

2 au2 and the entropy potential is θ(v) = 1
2 av2. Consequently

the entropy conservative numerical flux is G∗j+1/2 = 1
2 (v j+1 − v j), which gives the centered scheme. Clearly, this

space discretization is unstable, when coupled with the Forward Euler scheme. In fact the entropy production due to
the explicit time differencing is not counterbalanced by entropy dissipation from the space discretization. When the
entropy conservative scheme is coupled with Crank Nicolson time differencing, a fully discrete entropy conservative
scheme is obtained. The results obtained in this case on a smooth problem are compared with an entropy stable in
time scheme, as the Backward Euler time differencing in Fig. 4. It is clear that the fully discrete entropy conservative
scheme is much more accurate than Backward Euler. The error for the entropy conservative scheme is due mainly
to a dispersion error characteristic of second order schemes, while the error of the entropy stable implicit scheme is
due to a very high numerical diffusion. In both cases, the grid parameter λ = k

h = 1, although both schemes are
unconditionally stable.

On the other hand, the fully discrete entropy conservative scheme introduces spurious oscillations on non smooth
solutions, see Fig. 5. Note that these are contact discontinuities, so that no entropy dissipation occurs in the exact
solution. Still, entropy dissipation is clearly necessary to obtain a solution without oscillations. However, the scheme
does have some weak form of stability, which is illustrated by the fact that the Total Variation of the numerical solution
remains bounded in time.
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(a) (b)

Figure 5: Linear advection of a non smooth function with a fully discrete entropy conservative scheme, N = 100,N = 200,N = 400,N = 800
cells, up to T = 32. On the right, we show the behavior of the total variation and the total entropy as functions of time (bottom curve), which
remains perfectly constant for all grids. (a) Solution up to T = 32, (b) Total variation and entropy in time.

3.3. High order schemes

The construction of high order entropy stable schemes follows [11] and [12]. First, high order entropy conservative
space discretizations are constructed, which are later modified adding diffusion terms to preserve high order and ensure
entropy stability. The construction starts from the basic entropy conservative flux computed in (24). This numerical
flux is based on two points, and higher order entropy conservative schemes are obtained enlarging the stencil and
considering linear combinations of the basic two point entropy conservative flux:

Gp,∗
j+1/2(v j−p+1, . . . , v j+p) =

p−1∑
k,r=0

βr,kG∗(v j−k, v j+1+r). (42)

Note that for p = 1 the basic entropy conservative flux is recovered, which is second order accurate. In [12], it is
proven that, choosing appropriately the coefficients βr,k, it is possible to obtain numerical fluxes which are 2p order
accurate. For example:

G2,∗
j+1/2 =

4
3

G∗(v j, v j+1) −
1
6

G∗(v j−1, v j+1) −
1
6

G∗(v j, v j+2), (43)

G3,∗
j+1/2 =

3
2

G∗(v j, v j+1) −
3

10

[
G∗(v j−1, v j+1) + G∗(v j, v j+2)

]
+

1
30

[
G∗(v j−2, v j+1) + G∗(v j−1, v j+2) + G∗(v j, v j+3)

]
.

(44)

Entropy stable numerical fluxes which are 2p order accurate are obtained modifying (28) and designing highly
accurate diffusion terms D j+1/2. It has already been noted that to obtain a q order scheme the diffusion terms must be
of order q. Thus the diffusion terms written in the form (29) are modified applying diffusion to reconstructed data.
For this purpose, a piecewise polynomial reconstruction operator of degree q − 1 is applied to the grid values of the
entropic variables, obtaining the functionV(x), and the extrapolated values at the cell interfaces are computed as

v+
j+1/2 = lim

x→x j+
h
2
−
V(x) and v−j+1/2 = lim

x→x j+1−
h
2
−
V(x).

If the function v is smooth, then v+
j+1/2 − v−j+1/2 = O(q + 1), and thus the new diffusion terms will be given by

D j+1/2 = α j+1/2

(
v+

j+1/2 − v−j+1/2

)
. (45)
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It is straightforward to prove that the space entropy dissipation (31) for the semidiscrete scheme becomes

S (x)
j = −

1
4h

[
(v j+1 − v j)Tα j+1/2

(
v+

j+1/2 − v−j+1/2

)
+ (v j − v j−1)Tα j−1/2

(
v+

j−1/2 − v−j−1/2

)]
. (46)

Since the schemes must be entropy stable, the entropy space dissipation must be negative. Therefore, the jump
in the reconstructed values must have the same sign as the jump in grid values of v, i.e. (v j+1 − v j) · (v+

j+1/2 −

v−j+1/2) ≥ 0. This requirement is called sign preserving property in [12], where it is proven that the sign preserving
property is enjoyed by the ENO (Essentially Non Oscillatory) reconstruction algorithm of [29], and the standard
piecewise linear reconstruction with the MinMod limiter. However, the sign preserving property does not hold for
other standard reconstruction algorithms, such as the piecewise linear reconstruction with the Superbee limiter, or the
WENO reconstruction [5].

Not much is known on the behavior of the entropy dissipation due to high order time integrators. Usually, high
order fully discrete schemes for systems of conservation laws rely on Runge-Kutta schemes for the time discretization.
Runge Kutta methods are defined by their Butcher tableax (A, b), where b is a vector of ν coefficients, and A is a ν × ν
matrix of coefficients; ν is the number of stages of the Runge-Kutta scheme. For explicit Runge-Kutta methods
(ERK) the matrix A is strictly lower triangular. Introducing a Runge-Kutta discretization in time in the conservative
semidiscrete scheme

d
dt

u j +
1
h

(
F j+1/2 − F j−1/2

)
= 0, (47)

the numerical solution can be written as

Un+1
j = Un

j − λ

ν∑
i=1

bi

(
F(i)

j+1/2 − F(i)
j−1/2

)
, (48)

where, for an explicit scheme, the numerical fluxes F(i)
j+1/2 are computed only from the already known stage values,

which are given by

U(i)
j = Un

j − λ

i−1∑
k=1

ai,k

(
F(k)

j+1/2 − F(k)
j−1/2

)
. (49)

Within this framework, it is quite natural to define the cell entropy dissipation due to the fully discrete scheme as:

S j =
1
k

(
η(U)n+1

j − η(U)n
j

)
+

1
h

(
Ψn

j+1/2 − Ψn
j−1/2

)
, (50)

where

Ψn
j+1/2 =

ν∑
i=1

biΨ
(i)
j+1/2

Ψ
(i)
j+1/2 = Ψ(v(i)

j−p+1, . . . , v
(i)
j+p) =

p−1∑
k,r=0

βr,kΨ
(
v(i)

j−k, v
(i)
j+1+r

)
,

and the two-point numerical entropy flux Ψ(a, b) was defined in (23), the notation for the high order flux is established
in (42) and clearly v(i)

j = v(U(i)
j ).

Since the expression for Ψ is known, the quantity S j given by (50) is computable, once the numerical solution
has been updated. Due to the high non-linearity of the Runge-Kutta scheme, it is quite hard to separate the space
from the time contributions to S j, as was done for the simpler schemes before. However, in analogy with the case of
the Backward and the Forward Euler scheme, and keeping into account the structure of the Runge Kutta scheme, the
space contribution to the entropy dissipation can be defined as

S (x)
j = −

1
4h

ν∑
i=1

bi

[
(v(i)

j+1 − v(i)
j )Tα j+1/2

(
v+,(i)

j+1/2 − v−,(i)j+1/2

)
+ (v(i)

j − v(i)
j−1)Tα j−1/2

(
v+,(i)

j−1/2 − v−,(i)j−1/2

)]
. (51)
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(a) (b)

Figure 6: Linear advection of a smooth function. Numerical solution (dashed line). Time entropy residual for schemes of order 2, 3, and 4
(from top to bottom). (a) Entropy conservative, (b) Entropy stable.

In this case, the time contribution to the cell entropy dissipation can be estimated only a-posteriori as

S (t)
j = S j − S (x)

j . (52)

The definition above of the contribution to the entropy dissipation given by the time discretization is not exact, because
space and time are non linearly coupled in a high order scheme with Runge-Kutta time advancement, and at present
it is not known how to separate the two contributions. However, we can have an idea of how reliable the construction
proposed really is, comparing the entropy dissipation due to an entropy conservative (in space) semidicrete scheme
integrated in time with a Runge-Kutta method, and the time entropy dissipation S (t)

j of an entropy stable scheme,

with S (t)
j defined in (52). In the first case, we find the exact entropy behavior of the time integrator, because the

space entropy dissipation is zero by construction. This procedure can be applied only for smooth flows, because the
numerical solution would start oscillating in the presence of discontinuities and/or high gradients. In the second case,
we are only estimating the time contribution to the entropy production, but we are working on a scheme that can be
applied also to non linear problems developing shocks. The differences in the two approaches are shown in Fig. 6.
Both plots show the time entropy production due to several Runge-Kutta schemes, for a fixed number of grid points in
space. On the left, we show the total entropy production due to a fully discrete scheme built with entropy conservative
fluxes; note that, by construction, the entropy production of this scheme is due only to the time discretization. On
the right, we plot S (t)

j for a fully discrete scheme using entropy stable fluxes. As the figure shows, the two results do
not coincide, but they have the same behavior. In particular, in both cases, the explicit Runge-Kutta schemes give a
positive contribution to the entropy production, which therefore must be counterbalanced by entropy dissipation from
the space discretization. However, the spurious entropy production due to the time discretization decreases very fast
increasing the order of the time integrator. Note that the two numerical solutions (dashed line in the background) are
quite different: these results were obtained with a small number of grid points (N = 50), and the second order scheme.
The solution on the left does not suffer from numerical diffusion, and is very close to the exact solution, on the right
the effect of the diffusive fluxes, needed to achieve entropy stability, smears the profile.

In the following part of this section, we want to show a few results concerning the entropy behavior of high order
Runge Kutta schemes for the time integration of scalar conservation laws, coupled with high order entropy stable
fluxes. In each cell entropy dissipation is computed with (50), the space contribution is given by (51), and the time
contribution is found by subtraction as in (52). We underline that the splitting we propose between the space and the
time dissipation is only approximate, since both terms are intertwined in the Runge-Kutta time advancement. Still,
the data we obtain permit to compute the total entropy dissipation, and to give ideas of what is the order of magnitude
of the terms involved.

Now, we consider a non linear test. The equation is Burgers’ equation with initial data u0(x) = sin(x), and
periodic boundary conditions. In this problem, a shock develops at T = 1/(2π) starting from zero strength, reaching a



G. Puppo, M. Semplice / Physics Procedia 00 (2011) 1–28 19

(a) (b)

Figure 7: Burgers’ solution before shock formation. Rate of convergence of the entropy residuals for fully discrete Runge-Kutta schemes with
entropy stable fluxes. (a) max |S (t)

j |, (b) max |S (x)
j |.

maximum strength which later decreases with time. Fig. 7 shows the rate of convergence of the entropy residuals for
fully discrete entropy stable schemes, from order 1 to order 4, before shock formation. Both residuals converge to zero
with the expected rate, but it is clear that the entropy dissipation due to the space discretization is orders of magnitude
larger than the entropy production due to the time integrators. Next, Fig. 8 shows the behavior of the entropy with
time as the solution develops a shock, for several schemes. The solution is obtained with N = 50 grid points. On the
left, we show the difference ηηη(t) between the total entropy present in the computational domain as a function of time
and the initial entropy. Since the scheme dissipates entropy, the quantity ηηη(t) is negative, and it further decreases with
time. Here the absolute value of this quantity is shown. The vertical line indicates the time of shock formation. On
the right, the absolute value of the total entropy dissipated in each time step appears. The different curves correspond
to the different schemes. As long as the flow remains smooth, the entropy dissipation decreases in absolute value as
the order is increased. After shock formation however, all curves converge towards the exact entropy dissipation. In
particular, the exact entropy dissipation per time step for a single shock is given by, see (8):

S exa(t) =
1
h
�
η
� (
−

�
f
�

~u�
+

�
ψ
��
η
� ) ,

where ~u� denotes the jump in the variable u across the shock, since only the shocked cell gives a contribution. This
is the value the curves in the plots converge to. Note that the entropy on the shock per time step changes with time.
Initially, in this test problem, S exa(t) increases as the shock develops starting from zero strength, and later it decreases
as the shock strength slowly decays.

4. Entropy residual as an a posteriori error indicator

In this section we show how to compute an error indicator using the entropy production due to a finite volume
scheme. The indicator can then be used as a tool to drive grid adaptivity. This technique was presented in [13] for
central schemes based on staggered grids, and later extended to standard finite volume schemes in [14]. A more
rigorous approach which however applies only to scalar conservation laws can be found in [15].

The idea is to use the entropy production in each cell, induced by a standard finite volume scheme, to estimate
the local residual. This information can be exploited to build an a posteriori error indicator to drive the construction
of an adaptive mesh. For a standard finite volume scheme, the numerical solution satisfies equation (10) in all cells.
Using the information needed to compute the numerical flux F, a consistent entropy flux Ψ can be computed, and the
entropy production in each cell corresponding to the scheme above can be defined as

S n
j =

η(U)
n+1
j − η(U)

n
j

k
+

1
h

(
Ψ j+1/2 − Ψ j−1/2

)
. (53)
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(a) (b)

Figure 8: Burgers’ solution and shock formation. Total entropy as a function of time (left) minus initial entropy, and total entropy dissipation
per time step (right) for the fully discrete Runge-Kutta schemes with entropy stable fluxes, for order from 1 to 4. (a) Total entropy , (b) Entropy
production per time step.

However, even on smooth flows S n
j , 0. It will be shown that on smooth flows

S n
j = O(h)p,

where p is the accuracy of the underlying numerical scheme. On shocks,

S n
j '

1
h
.

Thus S n
j has the same size of the local error on smooth flows, while it is large on discontinuities.

These ideas can be applied on a standard high order finite volume method, based on Runge-Kutta time adavance-
ment and piecewise polynomial reconstructions. Suppose the RK method has ν stage values, and it is based on the
Runge-Kutta tableaux defined by the coefficient matrices (A, b). Then, equation (48) is applied to the cell averages of
the solution, obtaining the updated cell averages as

U
n+1
j = U

n
j − λ

ν∑
i=0

bi

(
F(i)

j+1/2 − F(i)
j−1/2

)
, (54)

where the numerical fluxes are computed with a standard first order numerical flux F(a, b), such as Lax-Friedrichs or
Godunov, to the boundary extrapolated data of the solution at the same stage:

F(i)
j+1/2 = F(U(i),−

j+1/2,U
(i),+
j+1/2).

The boundary extrapolated data are obtained applying a non-oscillatory reconstruction procedure R(x) to the cell
averages, obtaining the values at the cell edges:

R : {U} → R(x), U+
j+1/2 = lim

x→x j+
h
2
−
R(x), U−j+1/2 = lim

x→x j+1−
h
2
−
R(x).

Thus the boundary extrapolated data U(i),±
j+1/2 are computed from the cell averages of the stage values at level (i), which

are given by:

U
(i)
j = U

n
j − λ

i−1∑
k=1

aik

(
F(k)

j+1/2 − F(k)
j−1/2

)
.

Therefore a single Runge-Kutta time step requires ν evaluations of the numerical fluxes and of the reconstruction R
at each cell interface. For high order schemes, it is known that the numerical flux chosen influences the solution less
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and less as the order of the scheme is increased, [5]. So one chooses simple and fast numerical fluxes, such as the
local Lax Friedrichs flux. On the other hand the reconstruction becomes more complex as the order of accuracy is
increased. As a consequence, most of the computational effort is concentrated on the reconstruction of the boundary
data.

Once the solution U has been updated, the entropy production can be computed. Choose a numerical entropy flux
Ψ, consistent with ψ(u). At each Runge-Kutta stage, evaluate

Ψ
(i)
j+1/2 = Ψ(U(i),−

j+1/2,U
(i),+
j+1/2). (55)

Note that here the numerical entropy flux is applied to the boundary extrapolated values which have already been
reconstructed for computing F(i)

j+1/2. Then the numerical entropy production in the jth cell is defined as

S n
j =

1
k

η (
Un+1)

j − η (Un) j + λ

ν∑
i=1

bi

(
Ψ

(i)
j+1/2 − Ψ

(i)
j−1/2

) , (56)

where

η (Un) j =
1
h

∫ x j+h/2

x j−h/2
η (R(x)) dx.

This integral will be estimated with quadrature, using the same reconstruction operator used to compute the boundary
extrapolated data. For order up to 2, η(Un) j can be evaluated with the midpoint quadrature rule: η (Un) j = η

(
U

n
j

)
+

O(h)2. For higher accuracy, an improved quadrature rule must be chosen to evaluate η(Un) j. It is important to note
that the evaluation of the entropy indicator (56) costs less than the actual update of the solution (54), because no extra
reconstructions are needed.

A few properties of the entropy indicator defined in (56) now follow.

Theorem 4.1. Rate of convergence. Consider a conservative scheme of order p, of the form (54). Choose a
numerical entropy flux Ψ consistent with the entropy flux ψ. Evaluate the entropy production S n

j as in (56). Then, if
the solution is smooth in the j−th cell:

S n
j = O(hp) for h→ 0,

If the solution is not smooth, in the j−th cell,
S n

j = O(1/h)

Thus the theorem ensures that the entropy production is of the same order of the local truncation error of the
scheme, where the solution is smooth, and the grid is fine enough to resolve the accuracy of the scheme. On the
other hand, S n

j ∼
C
h on shocks. The proof is based on the fact that S n

j is the residual of a finite volume scheme for
∂tη(u) + ∂xψ(u) = 0.

We give the proof using the midpoint rule as a quadrature rule for the evaluation of η(Un) j. The general case is
similar and it can be found in [14].

Proof. Using the midpoint rule for evaluating η(u), the time part of the entropy residual can be written as

η(Un) j = η(U
n
j ) +

h2

24
η′′

∣∣∣
U(x j)

Ux|x j
+ O(h3).

Let u(t, x) be the exact solution and take U
n
j = un

j , so that the local error is U
n+1

= un+1
+ O(hp+1) for a scheme of

order p. Then

η
(
Un+1)

j − η (Un) j = η(U
n+1
j ) +

�
�

��h2

24
η′′Ux − η(U

n
j ) −

�
�

��h2

24
η′′Ux + O(h3)

= η(un+1
j ) + O(hp+1) − η(un

j ) + O(h3)

= η(u)
n+1
j − η(u)

n
j + O(hmin(3,p+1)) =

1
h

∫
I j

[
η(u(tn+1, x)) − η(u(tn, x))

]
dx + O(hmin(3,p+1))

=
1
h

∫
I j

∫ tn+1

tn

∂η(u(t, x))
∂t

dx dt + O(hmin(3,p+1)).
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Now the space part of S n
j is estimated. Since a Runge-Kutta scheme can be written as a time quadrature rule, and the

numerical flux Ψ j+1/2 is consistent with the exact entropy flux ψ,

λ

ν∑
i=1

bi

(
Ψ

(i)
j+1/2 − Ψ

(i)
j−1/2

)
=

1
h

∫ tn+1

tn

(
Ψ(U+

j+1/2(t),U−j+1/2(t)) − Ψ(U+
j−1/2(t),U−j−1/2(t))

)
dt + O(kp+1)

=
1
h

∫ tn+1

tn

[
Ψ(u(x j+1/2, t), u(x j+1/2, t)) − Ψ(u(x j−1/2, t), u(x j−1/2, t))

]
dt + O(kp+1) + O(hp+1)

=
1
h

∫ tn+1

tn

[
ψ(u(x j+1/2, t)) − ψ(u(x j−1/2, t))

]
+ O(kp+1) + O(hp+1)

=
1
h

∫ tn+1

tn

∫
I j

∂ψ(u)
∂x

dxdt + O
(
hp+1, kp+1

)
,

where k = λh was used together with the assumption that the scheme is p−th order accurate on smooth solutions.
Now, putting together the two contributions

S n
j =

1
k

1
h

∫ tn+1

tn

∫
I j
�������
(
∂η(v)
∂t

+
∂ψ(v)
∂x

)
dxdt + O

(
hmin(3,p+1), kp+1

) = O(hmin 2,p) (57)

The proof can be extended to higher order schemes, improving the quadrature for (η) as in [14], thus removing the
O(h2) term.

If the cell j contains a discontinuity, each term contributing to the definition of S n
j is bounded. Thus S n

j ∼
C
h on

shocks.

The entropy indicator preserves the correct sign of the entropy dissipation, provided the numerical entropy flux is
not only consistent, but accurately tailored to the particular numerical flux used to update the solution.

Theorem 4.2. First order scheme with Lax-Friedrichs flux. Suppose a scalar conservation law is integrated with
the Forward Euler scheme and the Lax Friedrichs flux, with α = max | f ′(u)|. Choose

F j+1/2 =
1
2

[
f (U j+1) + f (U j) − α(U j+1 − U j)

]
,

Ψ j+1/2 =
1
2

[
ψ(U j+1) + ψ(U j) − α(η(U j+1) − η(U j))

]
.

Then
S n

j ≤ 0

away from local extrema, while small positive overshoots may occour in those cells containing a local extremum, with
|S n

j | = O(h4)

The proof is quite technical and appears in [14]. However, the line of the proof can be appreciated from the proof
of the following result.

Theorem 4.3. First order scheme with Upwind flux. Suppose a scalar conservation law with f ′(u) > 0 is inte-
grated with the Forward Euler scheme and the Lax Friedrichs flux. Choose

F j+1/2 = f (U j),
Ψ j+1/2 = ψ(U j).

Then S n
j ≤ 0.
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Proof. Thanks to the particular choice of the numerical fluxes, the space part of the entropy production is

Ψ j+1/2 − Ψ j−1/2 = ψ(Un
j ) − ψ(Un

j−1) =

∫ Un
j

Un
j−1

ψ′(u)du =

∫ Un
j

Un
j−1

η′(u) f ′(u)du.

while, for the time part

η
(
Un+1

j

)
− η

(
Un

j

)
=

∫ Un+1
j

Un
j

η′(v)dv.

Introducing the change of variables v(u) = Un
j − λ[ f (Un

j ) − f (u)], the time part becomes

η
(
Un+1

j

)
− η

(
Un

j

)
=

∫ Un
j−1

Un
j

η′(v(u))λ f ′(u)du.

Adding the two terms, dropping the index n, and applying twice the mean value theorem one gets:

kS n
j = −

∫ U j

U j−1

η′′(ξ)
[
1 − λ f ′(η)

]
λ f ′(u)(U j − u) du,

where ξ and η are contained in the interval formed by U j−1 and U j. Finally, recalling that η′′ ≥ 0, that the CFL
condition ensures that the first parenthesis is positive, and that f ′λ ≥ 1 by hypothesis, the sign of S n

j coincides with

the sign of −
∫ U j

U j−1
(U j − u) du which is negative, as required.

Figure 9: Linear rotation of an initial rectangular patch. Solution with limiters (left), and without limiters (right)

We illustrate this result showing the entropy production obtained integrating on a fixed grid, with a second order
scheme based on a piecewise linear reconstruction, the linear equation

∂tu + ∂x

(
−(y − 1

2 ) π2 u
)

+ ∂y

(
(x − 1

2 ) π2 u
)

= 0,

with initial data consisting of a rectangular patch. Fig 9 shows the solution with and without limiters. As expected,
the vertical sides of the patch are smoothed by numerical diffusion, and the solution without limiters presents spurious
oscillations. Fig. 10 shows the entropy production corresponding to the numerical solutions shown in Fig. 9. The
indicator signals clearly the presence of the discontinuities, but it also detects the presence of spurious oscillations,
which correspond to the positive overshoots in the entropy production. The non-oscillatory solution results in entropy
dissipation with the correct sign. On the other hand, Fig. 11 shows the error indicator by Karni-Kurganov-Petrova
(KKP) presented in [25], again for the numerical solutions shown in Fig. 9. In this case the indicator detects the
presence of singularities, but it does not give indications to distinguish the entropic solution from the solution with
spurious oscillations.
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Figure 10: Linear rotation of an initial rectangular patch. Entropy production for the solution with limiters (left), and without limiters (right)

Figure 11: Linear rotation of an initial rectangular patch. Karni-Kurganov-Petrova error indicator for the solution with limiters (left), and without
limiters (right)

The rate of convergence of the entropy indicator is shown in Fig. 12, for a second and a for fourth order scheme,
applied to a scalar conservation law. The figure exhibits the rate of convergence on a shock, on a contact discontinuity
and on a smooth transition, together with the reference slopes. It is clear that |S j| ' O( 1

h ) on a shock, |S j| ' O(h0)
on a contact discontinuity, while |S j| ' O(hp) on smooth solutions. Moreover, the figure illustrates clearly that |S j|

varies by several orders of magnitude on the different solutions. This characteristic is important for adaptive strategies,
because it means that an adaptive grid driven by the entropy indicator will not be too sensitive to the threshold chosen.

4.1. Adaptive algorithm
In this section, we show results obtained applying the entropy indicator as an a posteriori error indicator to select

an adaptive grid that changes in time according to the behavior of the solution. The grid used here is based on mesh
widths that change as powers of 2 from a maximum length h0, so that a cell at level l will be characterized by a mesh
width hl = h02−l. The non uniform grid on which the numerical scheme is applied is stored in a tree structure, in order
to have easy access to each given cell and its neighbors. The memory structure with which the grid is stored is shown
in Fig. 13. Cartesian grids are used in these examples, as in the Conservation Laws Pack (CLAWPACK) [30], but,
unlike CLAWPACK, in this case only the data for active cells is kept in memory, i.e. only one single grid with cells of
different sizes is stored, as opposed to patches of overlayed uniform grids, as in [30]. The error indicator determines
the local mesh size. The time step can be chosen following two strategies.

• dt-mode: use the same time step everywhere. With this choice, the CFL condition imposes that the time step
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Figure 12: Rate of decay of the entropy indicator versus grid size for second order (left), and fourth order (right) schemes. The dashed lines
indicate the different rates: from top to bottom h−1 , h0, hp, with p = 2 on the left and p = 4 on the right. The markers give the entropy
productions due to shocks (top, circles), a contact discontinuity (triangles), and a smooth transition (stars). Note the difference in the scale
of the vertical axis between the two plots.

x
k=1 k=2 k=3 k=3

h0

Figure 13: Dyadic one-dimensional grid (left) and Quad-tree grid for two-dimensional problems (right)

is dictated by the smallest cells. Thus k ≤ λhl = λh02−l =⇒ k = λh02−Lmax , where Lmax denotes the maximum
level of refinement. This choice is followed for instance by [16]. This strategy is simple to implement, but can
result in very small time steps on coarse cells, if the grid is highly non uniform.

• CFL-mode: local timestepping. In this case, the mesh ratio λ is fixed on all cells. Thus a cell of width hl has a
time step of length kl = λhl. This choice is followed by, among others, [30], [31], [32]. In [14], we proposed
time advancement based on CFL mode with a novel approach, based on updating the solution starting from
the smallest cells, up to the coarsest cells. Our approach has the advantage of being exactly conservative, and
does not require to embed refined cells on a hierarchy of layers containing less and less refined cells, up to the
coarsest level of the grid.

These ideas were implemented on a second order scheme, based on a piecewise linear reconstruction, with Local
Lax-Fredrichs flux, and Heun (second order RK scheme) time advancement. A threshold Cref is fixed. Suppose that
at the time tn, at the end of a syncronization step, the solution U

n
is known on the whole grid. A time step of the

adaptive scheme is:

1. Compute U
n+1
j and S n

j on all grid points.
2. Recursively refine those cells where

S n
j > Cref and h j > hMIN
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kl = λhl = λh02−l = k02−l :

a cell of level l makes 2l steps, before reaching
the syncronization time K0, where the solution
is computed over the whole mesh.

x

t

k1

k2 k3

synchro

The new initial values for U
n
j after refinement are computed evaluating the new cell averages on the refined cells

with the aid of the reconstruction. Then U
n+1

are recomputed with the new initial data on each refined cell.
3. Coarsen any previously refined cell if

(S n
j + S n

j+1) < Ccoa =
Cref

4

The values U
n+1

after coarsening are computed averaging the values of the cell averages in those cells which
have been merged together.

We illustrate the performance of the adaptive scheme using the classical Sod’ shock tube problem, from gas dynamics.
In this problem, the initial data are discontinuous, and three waves arise from the initial discontinuity: a rarefaction
wave moving towards the left, a contact discontinuity and a shock wave ahead, moving towards the right. A few

Figure 14: Sod’ shock tube problem, evolution of the density profile, from the initial time (top left) to the final time (bottom right). Below each
profile the corresponding grid used by the adaptive algorithm is shown

snapshots of the solution and of the corresponding grid chosen by the algorithm appear in Fig. 14. The figure shows
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the density profile obtained at several times, and, immediately below, the corresponding grid chosen by the algorithm.
At the initial time, the computation is initialized with only two cells, and during the first time step the algorithm
recursively refines the grid around the initial step, obtaining the solution and the grid shown on the top left. As the
waves separate, the patches containing the grid at the maximum level of refinement move with the waves, while in the
intermediate constant states the grid is coarsened. As the two bottom figures show, the grid is coarsened also within
the rarefaction wave, which is detected as smooth, except at the head and tail of the rarefaction, where discontinuities
in the first derivatives occur.

Figure 15: Lax’ shock tube problem, density profile at the final time and zoom on the contact discontinuity and the shock wave (right). The
red markers denote the adaptive scheme solution, which, at the final time, required 374 cells. The green and the blue markers are obtained
with a fixed grid, using, respectively 256 and 512 points. The black continuous line is a reference solution, computed on a fixed grid with
2048 cells.

Finally, we show the density profile for Lax’ shock tube problem. Fig. 15 compares the solution obtained by the
adaptive algorithm using at the end 374 cells, (red markers) with two solutions computed on a fixed grid using slightly
less (N = 256, green markers), and slightly more (N = 512, blue markers) grid points. It is clear that the adaptive
solution has a better resolution than both of them. Actually, the adaptive solution has an improved resolution even
with respect to the reference solution (black) which was computed with N = 2048 grid points, as the zoom of the
density peak on the right of the figure shows.
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